Setting up for numerical calculations of the tissue signal in the case of vibrationally adiabatic conformational change.

We want to solve

$$i\hbar \dot{|\phi(t)}\rangle = \frac{\hat{p}^2}{2m^2} + V(q) |\phi(t)\rangle$$

starting from an initial condition at $t=0$, we proceed by finding the eigenstates and eigenvalues of the conformational Hamiltonian

$$H_{con} = \frac{\hat{p}^2}{2m^2} + V(q)$$

in a discrete position representation and resolving $|\phi(0)\rangle$ in terms of these eigenstates.

We use a grid of spacing δq comprising $2K+1$ points

$$q_j = j\delta q; j = -K, -K+1, \ldots, 0, \ldots, K.$$

Then an arbitrary matrix element of some operator \hat{O} is rendered as

$$<\phi_1|\hat{O}|\phi_2> = \int dq_1 dq_2 <\phi_1|q_1\hat{O}|q_2> <q_1|\phi_2>$$

$$= (\delta q)^2 \sum_{j} <\phi_1|q_j\hat{O}|q_j> <q_j|\phi_2>$$

$$= \sum_{j} \phi_j^* 0_j \phi_j = \phi^* 0 \phi,$$
where \(\phi_j = (\delta Q)^2 \langle q_j \phi \rangle \)

and \(Q \frac{\partial}{\partial Q} = \delta Q \langle q_j \phi \rangle Q \frac{\partial}{\partial Q} Q \phi \rangle \).

For the conformational coordinate operator we have, in particular,

\[
\langle \phi | Q \phi \rangle = \int dq \int dq' \langle \phi | q \rangle \delta(Q - q) \langle q \phi \rangle = \int dq \langle \phi | q \rangle \langle q | \phi \rangle = \sum_j \langle \phi | q_j \rangle \langle q_j | \phi \rangle
\]

\[
= \sum_j \phi_j^* q_j \phi_j
\]

\[
= \sum_{j_2} \phi_j^* \delta_{j_2} q_{j_2} \phi_{j_2}
\]

so it must be that the matrix representing the coordinate operator has elements

\[
Q_{j_2} = Q_j \delta_{j_2}
\]

For the conformational kinetic energy operator,

\[
\langle \phi | \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \phi \rangle = -\frac{i}{2m} \int dq \langle \phi | q \rangle \frac{\hbar^2}{2m} \langle q | \phi \rangle.
\]

Now \(\frac{\partial}{\partial Q} \langle q | \phi \rangle \approx (\delta Q)^{-1} (\langle q + \frac{\delta Q}{2} | \phi \rangle - \langle q - \frac{\delta Q}{2} | \phi \rangle) \)

and \(\frac{\partial^2}{\partial Q^2} \langle q | \phi \rangle \approx (\delta Q)^{-2} (\langle q + \frac{\delta Q}{2} | \phi \rangle - 2 \langle q | \phi \rangle + \langle q - \frac{\delta Q}{2} | \phi \rangle). \)
\[
\langle \phi \mid \frac{\hat{p}^2}{2m} \mid \phi \rangle = -\frac{1}{2m} \sum_j (\delta q)^2 (\bar{\phi}_{j+1} - 2\bar{\phi}_j + \bar{\phi}_{j-1})^2
\]

and we recognize that

\[
(\frac{\hat{p}^2}{2m})_{j_{\mathbb{R}}} = -\frac{1}{2m(\delta q)^2} (\delta_{j+1} - 2\delta_{j_\mathbb{R}} + \delta_{j-1})^2
\]

How should we set \(\delta q \) and \(\mathbb{R} \) to obtain the largest number of "good" eigenstates and eigenenergies?

For a given eigenstate \(\psi_n \) with energy \(E_n \) to be accurate, our grid must be large enough so that

\(V(\mathbb{R}) \) and \(V(\mathbb{R} - \mathbb{R}) = V(-\mathbb{R}) \) are both somewhat higher than \(E_n \). Since the wave function of the \(n \)th eigenstate has \(n \) nodes, and our grid must include several points between each pair of nodes in order to accurately portray that wave function, we also require

\[2\mathbb{R} + 1 \geq 3n \]

Loosely speaking, then, we expect about the lowest-lying third of our eigenstates and eigenenergies to be accurate, provided that our spatial grid extends over a range slightly larger than the region of nonnegligible
probability amplitude in $\psi_n \equiv (2\pi)^{1/2} \left(\frac{2\pi}{m}\right)^{1/4} n^{1/2} e^{i(-n/2)}$

$E_n \equiv (2\pi)^{1/2} \left(\frac{2\pi}{m}\right)^{1/4} n^{1/2} (3n)^{1/4} \cong \frac{\hbar}{2m} \frac{2}{15} \frac{2}{\sqrt{13}} \cong \frac{\hbar}{4\sqrt{2m}}.$

If we wish to accurately portray n_{max} states of a harmonic oscillator, we choose $2n+1 = 3n_{\text{max}}$, or n equal to the integer part of $3n_{\text{max}}/2$ and set the grid spacing so that

$$\frac{\hbar}{2} (n_{\text{max}} + \frac{1}{2}) \leq \frac{m \cdot \frac{\hbar}{2}}{2} \left(\frac{3}{2} n_{\text{max}} \right)^2 \delta Q^2$$

or

$$\delta Q \geq \frac{1}{n_{\text{max}}} \left(\frac{\hbar}{m \cdot \frac{\hbar}{2}} \right)^{1/2}.$$

In order to capture n_{max} states of a particle in a box of width L, we simply choose

\begin{align*}
X &= \text{IntegerPart} \left(3n_{\text{max}}/2 \right) \\
\delta Q &= \frac{L}{2X+2} \cong \frac{L/3}{n_{\text{max}}}.
\end{align*}

We can use these example systems to estimate the grid size and spacing needed to correctly calculate the lowest, say, 15 (i.e., $n = \frac{1}{5} \left(\frac{12\pi}{m} \right)^{-1}$) conformational eigenfunctions and eigenenergies of $\hat{P}^2/2m + \hbar \epsilon_0 (\hat{A})$ and $\hat{P}^2/2m + \hbar \epsilon_2 (\hat{A})$.

We choose $2X+1 = 3 \cdot 15 = 45 \Rightarrow X = 22$. The harmonic-oscillator model suggests that we should set

$$\delta Q = \frac{1}{15} \left(\frac{\hbar}{m} \right)^{1/2} \left(\frac{m \cdot \frac{\hbar}{2}}{12\pi} \right)^{1/4} = \frac{1}{15} \left(\frac{\hbar}{m \cdot \frac{\hbar}{2}} \right)^{1/2} (36)^{1/4} = \left(\frac{\hbar}{2m} \right)^{1/2} \frac{2}{15} \frac{2}{\sqrt{13}} \cong \frac{\hbar}{4\sqrt{2m}}.$$
The particle-in-a-box example recommends a somewhat larger grid spacing,

$$
\delta x = \frac{1}{45} \approx \frac{11}{11/2 \text{m}} \frac{1}{2 \text{m}} \frac{1}{45} = \frac{11}{0.282} \frac{1}{45} \frac{1}{2 \text{m}} \approx \frac{3.9}{45} \frac{1}{2 \text{m}}.
$$

Notice that 44 times the H.O.-recommended grid spacing gives a grid length of only \(11 \frac{1}{2 \text{m}}\), which is clearly much too small to cover the spatial range visited by the conformational eigenfunctions of interest.

The most prudent course of action will be to use a grid spacing \(\delta x = \frac{1}{5 \frac{1}{2 \text{m}}^{\frac{1}{2}}}\) slightly smaller than

The smaller recommendation and a grid size \(50 \frac{1}{2 \text{m}}\) slightly larger than seems necessary, so that

\((2\kappa + 1) \frac{1}{5 \frac{1}{2 \text{m}}^{\frac{1}{2}}} \approx 50 \frac{1}{2 \text{m}}\) or \(\kappa = 125\). The adequacy of these initial choices must of course be tested by decreasing the grid spacing and increasing the grid length (say, by simultaneously halving \(\delta x\) and quadrupling \(\kappa\)).