PHYSICAL REVIEW A

VOLUME 39, NUMBER 11

JUNE 1, 1989

Delay-time statistics of cooperative emission in the presence
of homogeneous line broadening

K. Rzazewski,* M. G. Raymer,’r and R. W. Boyd
Institute of Optics, University of Rochester, Rochester, New York 14627
(Received 10 January 1989)

We have developed a theoretical model that allows us to study the delay-time statistics of
superfluorescent pulses for the case of collisional broadening with a Lorentzian line shape. Our
model is based upon a more robust definition of delay time, based upon an energy rather than an in-
tensity reference. We calculate the probability distribution of delay times in the initiation regime of
superfluorescence, where the inversion is essentially constant. We find that, as the collisional de-
phasing rate is increased, the mean delay time increases and the distribution broadens. We compare
our results with those for the case of inhomogeneous broadening with a Lorentzian line shape and
find the unexpected result that the statistical behavior is identical.

I. INTRODUCTION

This paper addresses the quantume-statistical properties
of cooperative light emission from a collection of inverted
atoms in the presence of various line-broadening mecha-
nisms. It is known that both homogeneous and inhomo-
geneous broadening can inhibit the cooperative growth of
a macroscopic dipole moment. However, it has not pre-
viously been established how the statistical properties of
the emitted light depend on the mechanism responsible
for the broadening. For example, it is not obvious if the
statistical properties depend on whether the dephasing is
due to collisional or to Doppler broadening.

Even in the absence of dephasing processes, there are
large fluctuations in the shapes of the pulses emitted to
the superfluorescence (SF) process.” The fluctuations are
a macroscopic manifestation of quantum noise, which is
responsible for initiating the superfluorescence.? In the
case of pure superfluorescence (SF), it has been observed
by Gibbs et al.! that the delay time, or buildup time with
respect to the time of inverting the medium, fluctuates
from shot to shot. This behavior was explained by Haake
et al’® using a linearized, quantum-mechanical theory
which includes propagation effects. They calculated the
probability distribution of delay times, P,(r), defined
such that P,(7)d 7 is the probability that the pulse intensi-
ty J first reaches a chosen reference intensity / in the time
interval 7 to 7+d7. They found that the delay-time dis-
tribution broadens and shifts toward larger 7 with in-
creasing linewidth for the case of inhomogeneous line
broadening with a frequency distribution that decreases
faster than Lorentzian in the wings. They also obtained
the somewhat puzzling result that, in the case of a
Lorentzian-shaped inhomogeneous frequency distribu-
tion, P,(7) as defined above does not exist mathematical-
ly. It was not clear from their treatment whether this
difficulty would also occur for the more physically realis-
tic case of a homogeneously broadened Lorentzian line.

The purpose of the present paper is to extend the
theory of SF delay-time statistics to this very case. This
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case is of particular interest because the influence of
homogeneous dephasing on the SF process was studied in
a recent experiment.* As in the case of inhomogeneous
broadening, we find that the probability distribution
P,;(1) is ill-defined for a homogeneously broadened
Lorentzian line. We therefore introduce an improved
definition of delay time, based on integrated energy rath-
er than on intensity. It is found that in the linear-gain re-
gime, where the atoms remain essentially inverted, homo-
geneous and inhomogeneous broadenings lead to identi-
cal SF statistics if they both have Lorentzian line shapes.

In the linear-gain regime, the equations of motion for
SF are identical in form to those governing stimulated
Raman scattering.’~’ Therefore, the present results can
also be used directly to understand the buildup statistics
of transient stimulated Raman scattering (SRS) in the
presence of line broadening.

II. EQUATIONS OF MOTION

Let us consider a collection of N =p AL inverted two-
level atoms, contained in a cylindrical region of length L
and cross-sectional area A4, where p is the number density
of excited atoms. We assume that the Fresnel number
A /AL, where A is the transition wavelength, is close to
unity. In such a case, it is a good approximation to ig-
nore transverse effects and describe the propagation prob-
lem in terms of one-dimensional equations. For simplici-
ty, we measure the longitudinal dimension in units of the
length L of the interaction region so that z=0 and z=1
correspond to the two ends of the region. Furthermore,
we measure time in terms of dimensionless time ¢, which
is scaled by the standard superfluorescent decay time®

TR= S (1

where 7, denotes the natural lifetime of an isolated atom.
For convenience we also introduce the local dimension-
less time for each atom, which in terms of our scaled
coordinates is given by 7=t —z /v, where v =c7g /L is
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the velocity of light in our dimensionless units. We as-
sume that the sample is excited by “swept excitation” and
is totally inverted at local time 7=0. We calculate the
time evolution of the initially inverted system using a ful-
ly quantum-mechanical approach. We describe the opti-
cal field in terms of an electric field operator whose slow-
ly varying amplitude corresponding to the creation of
photons is denoted by E ~(z,7), and describe the atomic
polarization in terms of a collective field operator whose
part correspondmg to the lowering operator is represent-
ed by R~ =[R +(z,7)"). We choose these field
operators to be dlmensmnless In particular, the physical
electric field is measured in units of mpLdw /c so that the
number of emitted photons is given by (N/4}fE2dt‘

Similarly, (R ) is taken to be the mean dipole moment
per unit volume scaled by idp /2 where d is the atomic di-
pole transition moment.

Since we are interested primarily in the initiation of
superfluorescence, we assume that the atomic inversion
remains essentially constant (and equal to +1) for all
times under consideration. The dynamical evolution of
the system is then described by the linearized Maxwell-
Bloch equations, including collisional damping:”*

iE‘(z,r)zR tz,7), (2a)
oz

LR @n=—TR* @ +E " n+E G, @b)
-
where I" is equal to the damping rate multiplied by 74.
Within this linearization approximation, the polarization
field operators obey commutation relations appropriate
to a Bose field, which imply that the second-order corre-
lation function is given by’

(R¥(2,00R (2/,0)) =8(z —2") . 3)
The mean value (R *(z, 0) ) is equal to zero. The
Langevin noise operators F*(z,7) are required by the

fluctuation-dissipation theorem, and obey the relations’

(F(z,1))=(F¥(z,7))=0, (4a)

4

(FHz,m)F (z/,7))=—8(z —2')2[8(r—71') . (4b)

4

We assume that R* and F* both obey the Gaussian
decorrelation relation for higher-order correlation func-
tions. The solution to the Maxwell-Bloch equations (2) is
well known and is given by®°

E (z,7)= fozdz’Kl(z —z',7)R*(z',0)
+ fozdz’fonT’Kz(z —z',r—rF Tz, 7)),
(5a)
where
Kz —z',7)=e "I y([4(z —z")7]'"?), (5b)
Ky(z—z',7—7)=e " ([4(z —2')7—7)]'?) ,
(5¢)
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where I; denotes the jth-order modified Bessel function.
In writing the solution in the form shown, we have omit-
ted a term proport10na1 to the initial value of the electric
field operator £ (0,7) since this term does not contrib-
ute to normally ordered correlation functions in the case
in which the emission process is spontaneously initiated.
Note that this solution predicts large amplification of the
emitted field with increasing time 7. Consequently, at the
output face of the interaction region (z =1), the emitted
radiation will consist of a large number of photons and
thus we hereafter describe the statistical properties of the
generated radiation approximately by treating the field as
a classical stochastic process, £ ~(z,7)—E ~(z,7) having
Gaussian statistics.*’

III. DELAY-TIME STATISTICS

One of the more dramatic signatures of SF is the pres-
ence of a long time delay between the excitation and the
peak of the intensity of the emitted light. The delay time
is known to display large statistical fluctuations even
among systems that are prepared identically. In order to
predict the statistical properties of the delay time, Haake
et al.® have defined the delay time T as the interval be-
tween the time of excitation and the time ¢ (/) when the
emitted intensity J first reaches some reference intensity
I. In accordance with this definition, Haake et a/. then
estimate the probability density of the distribution of de-
lay times using the formula

> (6)

where © is the unit step function, and the brackets now
designate a classical ensemble average. Note that if the
intensity were a monotonically increasing function of
time, there would be no need to include the unit step
function in the definition (6) and in this case P;(T) would
give exactly (rather than estimate) the probability density
of first-passage times. Haake et al. have shown that
whenever the underlying statistical process is Gaussian,
Eq. (6) can be expressed explicitly in the form

(J(r)I

aJ

P,(T)=<8(T~t ne |4

PAT)= e ~1/4JT)
() 2I(rH¢
T 2 1/2
|+ erf <J(T>>21 I'°B(T)
a(J(THBXT) m{(J(T))?
I (JOT)A
X - - > 7
FPTTIY T I 7
where
(J(D))Y=(E (DE(T)),
BAT)=(E~ (T E( (T))
—~{E(TE™T(T))|?

and where the overdot indicates a derivative with respect
to the argument.

Haake et al. have applied Eq. (7) to the calculation of
delay-time statistics for the case of inhomogeneous line
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broadening and have found that the formula leads to
reasonable predictions for any assumed line shape except
that of a Lorentzian (or one that falls off in the wings
even more slowly), in which case the quantity (ETE™)
is divergent. When we try to evaluate Eq. (7) for the
problem treated in this paper, namely that of homogene-
ous broadening in the impact approximation [i.e., Egs.
(2)] we find that we cannot obtain reasonable predictions
either, because the quantity { £~ E ) diverges. One can
show from Eq. (5) that the expression for (E E™)
diverges because it involves a delta function evaluated at
zero time argument. We believe that the physical origin
of this divergence is the fact that E ~ (¢) fluctuates rapidly
and hence can cross the reference level Egp=1!"2
infinitely many times, leading to a divergence in Eq. (6).

Although the emitted field shows rapid fluctuations,
leading to the divergence problems just mentioned, the
total energy emitted up to time ¢, defined as

=__N__ L — ' + ’
wny="- [ drE~(L,E* (L1, 8)

is a monotonically increasing function of time. In our
units, w (¢) is simply the number of photons emitted up to
time t. We therefore propose as a more robust estimate
of the delay time T the time required for the emitted en-
ergy to reach some threshold energy level W. The proba-
bility density of delay times in accordance with this
definition is hence given by

Py (T)={8(T—t(W))) . 9

Since each trajectory crosses the reference energy W ex-
actly once, the function Py (T) constitutes a properly
normalized probability density and T is a proper first-
passage time. Using well-known properties of the delta
function, this expression can be expressed as

_ . dw(T)
PW(T)—<8(W w(T))— - iT >
df 1 QEW( o —itw(T)
-7 fﬁwzm 5 (e Y, (0
which can be evaluated to give'®
f df 1 expliEW) an

—w 2mi £ H 1+igA; )’
where the A; are the tlme-dependent eigenvalues of the
electric field autocorrelation function

N,
A(tl,t2)=-4—(E (2, (12)
defined on the interval 0=¢,,t, < 7. In the present con-
text, eigenvalues A; and eigenfunctions ¢,(¢) are defined
to be solutions of the integral equation

f diy A(t,1,)¢ (1) =K;,(1,)

Note that the eigenvalues and eigenfunctions depend on
T, but we have suppressed this dependence in our nota-
tion. It is easy to show that

Tr(A)=zkk=§fOT<E'mE+(r)>dz=<w<T>> .13
k
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The Fourier integral in Eq. (11) can be evaluated easily to
give the result

— Wk,

dT2 TL(1—A; /&)

JEk

Py(T)= (14)

for the probability density function for the delay times.
It is straightforward to verify that PW( T)YdT=1.

An important special case of Eq. (14) occurs when only
one of the eigenvalues is nonzero. As a consequence of
Eq. (13), the single eigenvalue is then just equal to
{(w(T)). Equation (14) is straightforwardly evaluated for
this case to give the simple result

Janw e~ W/wT)
(w(T)? ¢

where (J(T))=(w(T)) has been used. Physically, the
case of a single dominant eigenvalue occurs when the col-
lisional decay rate I of Eq. (2) vanishes.!® In this case,
one finds from Egs. (5) that the mean emitted intensity is
given by

(J(T))

P (T)= (15)

=§[I 211/2] [I 2t1/2)]} (16)

In the general case where collisional dephasing effects
are present, the correlation function A(¢,,7,) has more
than one nonzero eigenvalue and to find these eigenvalues
we diagonalize A4 (t,,t,) numerically. From the solutions
(5) it follows that the diagonal elements of A4 are given by

A(t,)=(J(¢))
={e M I3(2t"*)—1}(2t"")]}

+2rfo'dx e T I2(2x 12— T3 (2x /%))

(17a)

and that the off-diagonal elements are given by
A(t,t,)
~Tt, +1,)
e nton

Lt

—X,ty—x)e dx | ,

tm
X f(tl,t2)+21“f0 £,

(17b)
where ¢, is the lesser of #; and ¢,, and where
[t t,) =t (20172 (2t 17%)
— 12152831 (2t17%) . (17¢)

The eigenvalues thereby obtained are used in conjunction
with Eq. (14} to obtain the probability density function
Py (T).

In Fig. 1 the probability density function Py (T) is
plotted as a function of the dimensionless delay time T
for several values of the dimensionless dephasing rate I".
For this graph, the reference energy W was taken to be
10° in our dimensionless units of emitted photons. Note
that as the damping rate increases the probability distri-
bution shifts and broadens dramatically to longer delay.
The increase in the delay time is consistent with the pre-
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FIG. 1. Probability distribution of delay times based on a
reference energy W, plotted for several different values of the di-
mensionless dephasing rate I'.

diction of Schuurmans and Polder,'! and with the experi-
mental results of Okada et al.'> and Malcuit et al.* We
have found that for any value of the reference energy in
the range 10*-10% the distributions remain qualitatively
similar to those shown in the figure.

In Fig. 2, we plot the mean delay time

(T)= [ “TPy(T)dT

as a function of the dimensionless dephasing rate. Note
that the mean delay time is a monotonically increasing
function of I'. Also plotted in the figure is the delay time
of the mean energy, that is, the time at which the mean
energy (w(7T)) reaches the reference level W=10°. The
similarity of the two curves is a strong indication that our
definition of delay time based on an energy reference pro-
vides a consistent basis for the statistical analysis of
superfluorescent pulses.

IV. COMPARISON OF HOMOGENEOUS
AND INHOMOGENEOUS BROADENING

We now have a robust definition of delay time which
allows the analysis of delay-time statistics in the case of a
homogeneously broadened, Lorentzian-shaped atomic
line. It is thus of interest to question whether this
definition also allows the analysis of the inhomogeneously
broadened, Lorentzian-shaped atomic line, which, as
mentioned above, could not be treated using the

100
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@ 50 mean of individual delay times
<
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% delay time of mean snergy

0
0.00 0.08 0.16

dimensionless dephasing rate I'

FIG. 2. IMHustration of the increase of delay time with in-
creasing dephasing rate.
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definition of Haake et al. A related question is whether
the resulting statistical properties depend only on the
atomic line shape, or also on which type of broadening
(homogeneous or inhomogeneous) is present.

In the case of inhomogeneous broadening, the equa-
tions of motion for cooperative emission in scaled vari-
ables are®

3 a- .
5 E (@)= [dapBR (z,7,A) (18a)

F:) A ~
E—ﬁ“L(z,r,A):iAR ez, A)+E (z,7), (18b)

where p(A) is the normalized line-shape function and A is
the frequency detuning of a group of atoms from the
center of the distribution. The polarization operator of
this group of atoms is R *(z,7,A), and in the swept-
excitation case has the initial correlation properties

(R *(z,0,A))=0, (19a)
(R "(z,0,A)R ~(z',0,A"))
=3 5z —2)—_s(A—A) . (19)
N p(A) :

The solution of Eq. (18) with swept-excitation initial
conditions can easily be obtained using the methods in
Ref. 3, giving

E_(z,r)= fozdz’Kl(z —z',7)§+(z’,0)
+ 24 T ’ Y ‘e
fodz fodTKz(Z 2 r—)6 '),
(20a)
where SV is the frequency-averaged initial polarization

$*z,00= [dAap(AR*(2',0,4) , (20b)
and we have also defined the operator
G*(z', )= [dAp(ANT+id)R T(2,0,0)e2" . (20c)

The kernal functions K| and K, are the same as in the
solution (5) for the homogeneous-broadening case.

The solution (20) of the inhomogeneous equations is
formally identical to the solution (5) of the homogeneous
equations. So if we can equate S*(z',0) with R *(z*,0),
and also G*(z,7') with F¥(z',7'), we would have a
complete equivalence between the two cases. This
equivalence can indeed be shown in the statistical sense.
First, note that all of the mentioned operators obey the
Gaussian decorrelation relation for higher-order corre,l\a-
tion functions, since the newly introduced operators §*
and G are homogeneous linear functionals of the opera-
tors R™ and F™. Second, note that the two-point corre-
lation functions of the new operators are given by

(§%(2,008 (z',0))
= [dapa) fdapa)
X (R *(2,0,A)R ~(z',0,A"))

=%8(z —2) (21a)

and
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(G'(z,n6 (z,7))= [dAp(A) [ dAP(A )T+ AR ¥(2,0,0)R ~(z/,0,A) )eidTe ~ia™

4
N

where Eq. (19b) has been used. By comparing Eq. (21a)
with (3) we see that S 7(z,0) and R *(2,0) have the same
correlation functions (to all orders), and therefore these
can be thought of as corresponding identical random pro-
cesses (in the classical language). In order to evaluate Eq.
(21b) we must specify the form of the inhomogeneous line
shape p(A). If we assume it to be a normalized Lorentz-
ian,

r/m

=—, (22)
A*+T?

we immediately obtain
(6 *(z,ﬂé*(z',f')):%s(z 2 RrS(r—7) . (23)

Comparing Eq. (23) to Eq. (4), we see that G *(z,7) and
F™(z,7) correspond to identical random processes. Note
that in the case that p(A) is not a Lorentzian, G *(z,7)
will not be delta correlated in time, and thus the
equivalence to F ™ (z,7) is lost.

We conclude that for a Lorentzian line shape the gen-
erated electric field £ (z,7) has identical statistical prop-
erties for both homogeneous and inhomogeneous
broadening. Therefore, the same analysis of delay-time
statistics given in Sec. III can be applied to the case of in-
homogeneous broadening with a Lorentzian line shape,
and the results are identical (Figs. 1 and 2). In the case
that p(A) is not Lorentzian, the same analysis can still be
ussd, btlt now the field autocorrelation function
(E~(t,)E*(t,)) in Eq. (12) must be evaluated using
solution (20). We will not do that here, although it is
straightforward to do so.

V. CONCLUSIONS

We have introduced a new definition of delay time
based on an energy reference rather than an intensity
reference. This new definition is generally applicable,
since it allows us to treat even the Lorentzian line shape

8(z —Z')fdAp(A)(r‘2+A2)eiA(r—f') ,

(21b)

f

which the former definition could not treat.

On the basis of our new definition of delay time, we
have calculated how the probability distribution of delay
times depends on the homogeneous dephasing rate TI'.
We find that the delay time is a monotonically increasing
function of the dephasing rate. Note that our new
definition of delay time is an energy delivery time. In the
experimental paper of Malcuit et al.,* delay time was tak-
en to be a “turn-on” or rise time of the emitted radiation.
In accordance with this definition, they find that the de-
lay time first increases and then decreases with increasing
dephasing rate.

We find that our probability distribution of delay times
broadens dramatically for dephasing rates I’ =2 0.15. This
broadened distribution is indicative of the enhanced fluc-
tuations that are characteristic of the transition from
pure SF to amplified spontaneous emission (ASE). This
value I'=0.15 is close to the critical dephasing rate intro-
duced by Schuurmans and Polder'! to characterize the
transition from SF to ASE. These authors estimate that
the transition from SF to ASE occurs for a dipole de-
phase time of

T2=(7',TD)1/2 »

where 7p is the mean delay time in the absence of de-
phasing processes. In our dimensionless units, 7.=1 and
7p=19, implying that the transition occurs near
I'=0.23.

We have furthermore demonstrated for the case of a
Lorentzian line shape that homogeneous and inhomo-
geneous broadening lead to identical statistical properties
for the SF pulses in the linear regime. It is likely that this
equivalence between homogeneous and inhomogeneous
broadening does not hold in the nonlinear regime of SF
(i.e., when the depletion of the population inversion be-
comes important) nor in the linear regime for other line
shapes.
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