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Time-Dependent  Semiclassical  Theory of Gain- 
Coupled  Distributed Feedback  Lasers 

IRL N. DULING I11 AND M. G. R A W E R  

new  predictions are made of the behavior in  the  short  pump pulse  re- 
gime. It is  found  that  the  emitted pulse duration is dominated  by  the 
transit  time  through  the  pumped region. By studying  the evolution of 
the field distribution inside the cavity,  insight can  be gained into  the 
operation of the DFL. The  effect  of spatial hole burning in a gain- 
coupled DFL is  treated  and  found to be small. 

I. INTRODUCTION 
ECENT interest  in  the  transient  behavior of distributed 
feedback  lasers has led to the  need for  a more  complete 

theoretical  analysis  than  has  existed  previously.  The  photon 
rate  equation  model used by Bor [ I ]  treats  the  time  depen- 
dence  of  the laser output,  but  due  to  the mean  field  approxi- 
mation  inherent  in  this  theory it is unable to treat  the regime 
where  spatial  propagation  and  cavity  length  become important 
in  determining  the output pulse duration. This regime is of 
particular  interest  because  of the possibility of producing single 
pulses of  picosecond  duration from such  lasers. 

The  fundamental  characteristic  of  a  distributed  feedback laser 
(DFL) is that in the absence  of  external  mirrors, the necessary 
feedback is provided by Bragg scattering  from  spatially  periodic 
variations  of the complex  refractive  index  of the laser medium. 
This can be either the real component  or imaginary component 
(gain) of  the material  index  or the effective  index  (as  in  an op- 
tical  waveguide). In the case where  the  gain is used to vary the 
complex  index  a  nonlinear  coupling  occurs  between the gain 
and the  optical field. As the light  intensity  in  the  excited  region 
increases, the gain is depleted,  destroying the  feedback  and al- 
lowing the light to escape  the  medium. This self cavity dump- 
ing can,  for  a range of pump energies,  produce  a  train  of ultra- 
short  pulses.  Typically  these  pulses  are 50-100 times  shorter 
than  the  pump pulse used [2] . 
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propagating waves coupled  by Bragg reflection.  The  deriva- 
tion of the basic  equations is presented in Section III. Section 
II is a  brief review of  the  previous  rate  equation  model given 
for  comparison.  Section IV presents  comparisons  of the new 
theory  to  the existing  steady  state  and  transient  theories  in the 
appropriate  limits.  Further  predictions  in  the region where the 
previous  transient  theory is not valid are  also  included. An an- 
alysis of the effect  of  spatial  hole  burning  is  presented  in  the 
Appendjx. 

11. PHOTON RATE EQUATION MODEL 

The  photon rate  equation  model  analyzed  by Bor [ l ]  treats 
the medium  shown  in  Fig. 1 as a  four-level  system where 2 + 1 
is the lasing transition.  Here, a, and a, are  the  absorption  and 
emission cross sections, Xz is the  pump  rate  into level 3, the 
y’s are  spontaneous  or  nonradiative  rates (ylo and y32 are  as- 
sumed  large),  and u0 is the  atomic  frequency of the 2 -+ 1 
transition.  The  rate  equations  with W population  mversion 
density  and q photon density are 

w = X,(N- W )  - - w q  - yzl w aec 
n 

q =- wq- . a,c 
n 

where 

is the effective  cavity  decay  time 

L E length  of the excited  region 

V visibility  of the gain modulation 

n EZ refractive  index  of  the  host  material 

b a =  
No, L 2 S  

is the  fraction of spontaneous emission contributing to  the laser 
output 

b = vertical  focus  parameter 
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Fig. 1. The four level system  used for both the  photon and  semiclassical 
rate  equations.  The decay rates 32 and 10 are  assumed  large. 

N lasing  species  density 

S s spectral  fraction  of  contributing  spontaneous  emission. 

Throughout  this  paper  a dot, e.g., l$, indicates  a  partial deriva- 
tive  with  respect to time. 

This theory  correctly  predicts  the  transient behavior  of the 
gain-coupled  distributed  feedback  laser in  the  limit  where  the 
pump  duration (T,)  is much longer than  the  transit  time of 
the laser light  along the pumped region (nL/c). When T, < 
nL/c the spatially  varying.field  distribution must  be considered 
in  order to determine  the  output pulse  characteristics. Since 
the  photon  rate  equation model  considers  only the  photon 
number in  the  cavity  (mean  field  approximation)  it is unable 
to accurately  predict  the DFL output characteristics  in  this  re- 
gime.  Results  of  this  model  for laser output pulse duration are 
compared in Section V with  those  from  the semiclassical theory 
presented  here. 

111. SEMICLASSICAL  THEORY OF THE DFL 
A .  Population  Equations 

As in the  rate  equation  theory,  the gain medium  is  modeled 
according to  Fig. 1. Following  the  approach  of  Sargent et al., 
[4J the system is described  by  the  equations for  the  density 
matrix 

i l l  = - YlOPll + YZlP22 + 

and  (3b)  leads to 

P 2  Y 
P 2 2  = A2 - Y2lP22 - 3 A2  y2 I A I2w ( 5 4  

P" 
i l l  = Y2lP22 - YlOPll -t 5 *2 y2 /AI2w.  (5b) 

The  equations are further simplified by assuming that y lo  is 
large so that pI1 < < p z 2  and w " p z 2 .  Then  the inversion w 
obeys 

W = h2 - y21 w - B / A  I2w ( 6 )  

where 
2 

B =  5 ( a2: y2) 

To provide  feedback for  the gain-coupled DFL the  pumping 
rate h2 is spatially  modulated  with  a  period A = n/&, 

h2 = N q t )  (1 + vcos 2602) (7) 

where,  again, I/ is the  visibility of the fringes  and  where h ( t )  
accounts  for  the  time dependence  of the pumping, which  may 
be  provided by  a laser pulse. To remove  the  rapid  spatial mod- 
ulation  from  the  equations, and to go to a macroscopic  descrip- 
tion,  a new inversion  density  variable W is defined by 

W =  
NW 

1 -I- vcos 2poz . (8) 

The  equation  for  the  time  dependence  of W is then,  from (6),  

W = N X -  y21w- BlAj2W. (9) 

B. Field Equations 
The field  evolution  is  determined by  the wave equation 

1 
P Z l  = -(iwo + -Y)P2l + V2l ( P Z Z  - e l l ) .  (3c)  where the polarization Y= [P(z, t )  exp ( i o t )  + c.c] . 

If A(z ,  t )  is separated into two  counter-propagating waves 
Note that pii is the  population of level i and y is the  homogen- A(z ,  t )  = Re iPoz Se-iPoz (1 1) 
eous  linewidth  of  the lasing transition. V2, = -pE(z ,   t )  is the 
atomic  interaction  energy, p is the  dipole  matrix  element,  and  substituted into (10) we obtain(ignoring  second  derivatives 
E ( z ,   t )  = 3 (A( z ,  t )  exp ( i w t )  t c.c.) is the electric  field  in o f R  and S as  well as the  first  derivative  of P )  
terms  of  the slowly varying envelope A(z,  t ) .  Here C.C.  denotes 
the complex  conjugate. 

the rate  equation  approximation  for  the gain medium (not  the 
fields),  which is  valid when the  linewidth y is  sufficiently large 
[4J , [5] . After  formally  integrating  (3c)  and assuming that 

A ( z ,  t )  and  the  population  inversion w(z ,  t )  s p Z 2  - p l l  vary - ipoz - 2 n n 2 0 2  
little  in  time y-l , pzl becomes  approximately 

POORr - 
(0; - k$??-) R - - A] e+iPoz 

i o n 2  
The  density  matrix  equations can be simplified by making C2 

. e  
f-2 

P (1 2) 

pzl = __ ___ 
-ip A*w t where  a  prime  (e.g., R ' )  indicates  a  partial  derivative  with re- 
24 i A + y  (4) spect to z. In  the semiclassical theory  the polarization is deter- 

where A = wo - w and  nonresonant  terms have been  neglected 
(rotating wave approximation [6] ). Substituting (4) into (3a) P =  2Npp12  e . -iw 0 t 

mined by 

(1 3) 
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Using the value  of p12 = p21 from (4) we get 

N p 2  Aw p=--- 
pi i A t y ’  (1 4) 

W 

Significant feedback occurs only  for 0 2 Po.  Using this  fact I 
and  (14),  (12) can be  separated  into  the following two  equa- 
tions (a) 

n .  CYVW 
C 2 

- S ’ - - S  t ( a W -   i 6 ) S = -  __ 
n -  a vw 
C 2 

R ‘ -  -- R t(aW- i 6 ) R = -  __ S (1 5a) 

R (1  5b) 
I 

where 6 = ( B2 - /3i)/2p0  and CY = -2n/3Np2/A(iA t 7) .  Equation 
(15) was obtained  by neglecting terms  in  exp (? i3pOz), i.e., 
assuming that W is slowly varying spatially. T h s  neglects spa- 
tial  hole  burning,  which is treated  in  the  Appendix,  and is 
found to be relatively unimportant,  in agreement  with the 
steady-state case [4J . 

Depletion  of the ground state, level 0, is accounted  for  in  the 
normal  manner  through  the  pump  term h(t), i.e., by replacing 

AN + h(N - W ) .  (1 6 )  

In  order  to  simulate spontaneous  emission, a uniform noise 
term  equivalent to  one  photon in the  excited region  was intro- 
duced  into  the field equations.  The  time averaged energy 

where the integral is  over the volume Vo of  the  excited region. 
Assuming the noise to  be equal in  both directions,  we  find  for 
the noise fields 

The  final  equations  are  then, 

R ’ - - - d t ( a W - i 6 ) ( R + R o ) = - - -  
n aWV 

S 
c 2 

In going from (9) to (1 8c)  the cross terms of 1 A l 2  were ne- 
glected,  consistent  with  the  assumption  of no spatial  hole  burn- 
ing (see the Appendix). 

Iv. THEORETICAL PREDICTIONS 

Equation (1 8) was  solved numerically. Due to  the  counter- 
propagating nature of the field solutions, a second order Euler 
method was used which  required a square  integration grid (Az= 
cAt).  The  equation was integrated  subject to  the  boundary 
conditions S ( L ,  t )  = R(0, t )  = W(z, 0) = 0, and h(t) is Gaussian 
in  time  and  uniform in space. 

The system  parameters  where chosen appropriate  for  Roda- 
mine 6G in  ethylene glycol as the active medium in  the  distrib- 

Fig. 2. Total  intensity I = R 2  + S 2  and  population inversion density W 
plotted as functions of time and space for an increasing pump energy. 
The  pump pulse duration was 70 ps, and  the  pumped region was 0.1 
cm in length.  The relative values of the pump energies are (a) 0.5, (b) 
1.1, (c) 1.5,  and  (d) 2.0. The vertical scales are  normalized and  the 
time axis represents 120 ps full scale. 

uted feedback laser, i.e.. N = 3.5 X * M (2.1 X 10l8 mol- 
ecules/cm2), Vo = bL/Noa, b = 0.025  cm, oa = 2.7 X 
cm2, a = oe/2,0e = 1.4 X 1 0 - l ~  cm2,T = 1/721 = 4 ns, V =  1.0, 
n = 1.44. 

Due  to  the  nonlinear coupling between  the gain, the Bragg 
reflectivity,  and  the  field, a self cavity-dumping is observed for 
a range of pump energies in the  DFL.  The inversion builds  up 
as the integral of the  pump pulse until  the field increases suf- 
ficiently  for gain saturation  to  become  dominant.  At  this  time , 
the Bragg reflectivity decreases rapidly allowing the field to 
escape as a pulse. If  this process occurs  during the  pump pulse 
the inversion has the  opportunity to recover and  produce a 
second pulse. As the  pump energy is increased,  the initial 
dumping will occur at earlier times allowing additional pulses 
to be produced.  In Fig. 2, the  total  intensity I = R 2  t S 2 ,  and 
population inversion W are shown for a sequence  of pump  en- 
ergies. The  solutions  are  plotted as functions of space and  time. 
The laser output is directly  proportional to the value of the 
total intensity  at  the  end  face ( z  = 0, L )  of the  pumped region. 
The behavior of  these  solutions at  the end faces is  in  excellent 
qualitative  agreement  with  the  photon  rate  equation  model 
[11. 
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(a) (b) 
Fig. 3.  Duration of the  first pulse  as  a function of the length  of the 

DFL for  a 3.5 ns  pump pulse and  (a) the  second pulse at  threshold, 
(b) the  third pulse at threshold. The dashed line  corresponds  to  the 
photon  rate  equation  prediction,  and  the  dotted  line  to  the semiclas- 
sical prediction.  The solid  line is t = nL/c.  

I / 

LENGTH OF THE DFL (mm) 

Fig. 4. Duration of the  first pulse as a function of the  length of the 
DFL  for a 70 ps  pump pulse and  the  second pulse a t  threshold.  The 
dashed line is that  predicted by the  photon  rate  equation  model  and 
the  dotted line is  that  predicted by the semiclassical theory.  The solid 
line i s  t = nL/c.  

Using the previously  published  predictions [7] of the  pho- 
ton rate  equations  for  the  duration  of  the  initial  output  pulse 
as a  function  of  the  length  of  the pumped  region given that 
either a) the  second  pulse is at threshold or b) the  third pulse 
is at  threshold,  the  new  theory  can  be  quantitatively  evaluated 
as to its  performance in the limit  of  long pump pulses, Tp >> 
nL/c. This  comparison is shown  in  Fig. 3 for  a  pump pulse of 
3.5 ns.  The  results  show  excellent  agreement  between  the  two 
theories  in  this  limit. It is interesting to  note  that, although 
there is an  offset,  the slope  of the dependence is very close to 
that  of  the line t = nL/c. 

It has  been  shown  previously  that as the  pump pulse width is 
reduced,  the pulse  duration  of  the  DFL will also shorten [ 2 ] .  
However, as the  pump pulse duration  becomes  comparable to 
the  pumped  region  transit  time (Tp = nL/c) the  photon  rate 
equation  analysis will be invalid.  In  Fig. 4, the  predicted  pulse 
width  versus pumped region  length [similar to Fig.  3(a)]  in 
the case of  a 70 ps pump pulse is shown for  the  two theories. 
Again, the line t = nL/c is shown.  A large discrepancy  between 
the  theories is evident  which, as expected, decreases as the 
length  of the pumped  region is decreased. It is seen that  the 
pulse widths  are  much longer than  predicted  by  the  photon  rate 
equations  and  that  their  duration approaches the  transit  time 
nL/c. 

In  the  steady-state  limit, 3 = R = 0, the field  equations  (15) 
reduce  directly to  the  form  of previous  steady-state  theories 
[3] , [4] in the gain-coupled  case. The  amount  of Bragg reflec- 
tivity at  any  point is proportional to  the coefficient  of the 
coupling term in  the  field  equations.  The value of this coupling 

I m  

(b) z 

w + 
I 

1 

0 L/2 L 

POSITION IN THE DFL ( z )  

(C) 

Fig. 5. The  intensity I and inversion density W as functions  of space 
and  time  for  steady-state pumping, (a) and (b), and  the final intensity 
distribution along the length  of the DFL, (c).  The  length of the  DFL 
was 0.3 cm,  and  the  time axis is 120 ps full scale. 

coefficient  determines  the  nature  of the field  distribution.  For 
a  gain-coupled  laser,  the  coupling  coefficient  can  be  expressed 
as aVWL/2. It has  been  shown  in  the  steady-state  analyses 
that if aVWL/2 < 1.5, termed  undercoupled,  the  field  distribu- 
tion will be peaked  toward  the  ends  of the pumped  region, 
while if aVWL/2 > 1.5, termed  overcoupled, the  distribution 
will be  peaked  in the  center  of  the cavity.  In  the case of  steady- 
state  pumping  shown  in  Fig. 5 ,  after  the initial  oscillations 
damp  out,  the coupling  coefficient  can be calculated for dif- 
ferent  positions  in  the  pumped  region.  The  coupling  coeffi- 
cient varies from 0.42 at  the edge of the region (z = 0, L )  to 
1.3 in the  center ( z  = L/2 )  where it is a  maximum. This evalua- 
tion agrees with  the  form of the  intensity  distribution seen in 
Fig.  5(c),  which  shows  behavior  typical  of  undercoupling. 

We have found  that due to gam saturation  in  a laser of this 
type,  the high values of aVWL required for overcoupled  opera- 
tion  cannot be  maintained in  the  steady  state. However,during 
the  transient field  build-up,  prior to gain saturation,  the  coupl- 
ing coefficient can reach values in  the  overcoupled  range.  This 
results from  the gain overshooting  the  steady-state value prior 
to the field build-up. As the field  builds up  it experiences 
strong  coupling  and  therefore  peaks  in  the  center  of the  cavity. 
Then, as the  transient field  depletes the gain, the laser shifts 
to  the  undercoupled regime enabling the pulse to escape. In 
Fig. 6 ,  three-dimensional  plots  of two cases  are  shown. For 
each case the  plot is  viewed both  Irom earlier  times, Fig. 6(a) 
and (c), and  from  later  times Fig. 6  (b)  and  (d)  to allow ex- 
amination of the  intensity  distribution as it evolves. In Fig. 
6(a) the  contours of  equal  time can be  seen to have positive 
curvature  indicating  'an  overcoupled  intensity  distribution, 
while at later  times, Fig. 6(b),  the  contours  show the negatwe 
curvature  typical  of  undercoupled  operation. Fig. 6(c)  and (d) 



1206 IEEE JOURNAL ( I F  QUANTUM ELECTRONICS, VOL. QE-20, NO. 10, OCTOBER 1984 

I 

I 

Fig. 6. The  intensity as functions of space and time for  the case of the 
DFL of length 0.3 cm, (a) and (b), and  0.03  cm, (c) and (d). In both 
cases the  pump  intensity was adjusted so that the  second  pulse was at 
threshold. For each case the  intensity distribution is shown as seen 
from earlier times, (a) and (c), or  from later  times (b) and  (d). The 
full scale time is 120 ps. 

are the same views  of the field when  the  pumped region is made 
shorter. In this case the  operation is undercoupled (nVWLI2 < 
1.5) even during the build up, as seen by negative curvatures 
at all times. 

V. CONCLUSION 
Due to  the  inability of the  photon  rate  equation analysis of 

the DFL to predict  the  output  characteristics  accurately  in  the 
regime where the pumped-region  transit time is comparable to 
the  pump pulse length, a semiclassical treatment  has been de- 
veloped which  takes into  account  the spatial variation of  the 
field and inversion along the  pumped region. The addition of 
this  consideration provides a theory capable of handling both 
the  short-time  transient regime and the  steady-state  theories 
Comparisons with existing Transient and  steady-state  theories 
show  good  agreement in  the  limits where  those  theories are 
valid, and  predictions are made in the  short-pulse regime where 
the  photon  rate  equation is invalid. These predictions  indicate 
that  the pulse duration is dominated by  the transit  time along 
the  pumped region. Also, a careful evaluation of  the field evolu- 
tion shows that in some cases the laser  is overcoupled at early 
times and, as the pulse  is emitted, becomes undercoupled, while 
in  other cases the  operation remains undercoupled throughout 
the build-up  and pulse emission process. This provides new in- 
sight into  the mechanisms involved in  the DFL. Further refine- 
ments  of  this  theory which  may have an  effect on the  output 
characteristics  are to include  excited  state  absorption,  reabsorp- 
tion of the lasing light in  the case of dye lasers, molecular 
rotation  and  diffusion,  and  the  addition  of a saturable  absorber 
to  the  medium. 

APPENDIX 
Spatial Hole Burning 

Omission of the  exp (k i3/3,z) terms  in  (15)  and  the cross- 
terms  of ] A l 2  in (18c) is equivalent to ignoring spatial  hole 
burning, whose effect in a DFL is to flatten  the peaks nf the 
gain modulation. A fairly straightfoward analysis can be made 
by  factoring an additional  modulation  term  out of the inver- 
sion W. In addition to (7) and (8) then, we  define 

W =  W ,  + W1 cos (2002 + $) (Al l  

where the  coefficients are obtained as in Fourier analysis, 

W o  = [ Wdz (integral over one  grating  period) 

Wo is thus  the  local average  of the inversion, and W1 describes 
the  strength of  spatial  hole  burning. We take  the phase to  be 
that which leads to maximum gain, $ = 0, determined by re- 
quiring maximum  spatial overlap  of the  intensity  distribution 
with  the gain distribution.  The  equations governing the  popu- 
lation inversion are obtained  by  differentiating (A2) with re- 
spect to time  and  substituting  for ~ from (9). After integrat- 
ing over one grating spacing  we find 

~ , = X - y 2 , W , - B ( ~ R / 2 + ~ S ) 2 ) W , - B ~ R S ~ W ~  (A3a) 

L?, =-y21W1 - B(IRI2  + I S I 2 ) W 1  - 2B/RS(Wo.  (A3b) 

Starting  from (1 2) and  (14) and using (Al),  the field  equations 
become 

n 
R ' -   - R + + W , R - i 6 R = - - W o S - - W l R -  - WIS 

CYV CYV ff 

C 2 2 2 

-S f  - - 3 + aW0S - iAS  
n 
C 

To obtain  these  equations, we neglected terms  of  the  form  exp 
( + i 5 u 0 z ) .  This  iterative  procedure  could be extended  to 
higher harmonics  of u g  if desired- 

When these modifications were included in the numerical 
solution,  it was found  that  it had little  or  no  effect on the  out- 
put  fields. A typical case  is shown in Fig. 7. The holeburning 
strength W1 peaks in the  center of the pumped region ( z  = 
L/2 )  as seen in Fig. 7(c). This is expected since its source term 
depends on the  product  of  the fields I RSI, and  one of these 
fields is always zero  at  the  ends of the region. If the magni- 
tude of the holeburning  strength W, is  compared to  the average 
inversion Wo at  the  center of the pumped  region,  it  is  found 
that W1 grows to 0.36 W, for  this case. This appears to  be  in- 
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(C) 

Fig. 7. Plotted as function of space and time are (a) the  Intensity, I ,  
(b)  the  local average icversion Wo, and (c) the negative of the hole- 
burning  strength -W1. The  length  of  the DFL was 0.03 cm,  and a 70 
ps  pump pulse was used. The  full scale time is 120 ps. 

sufficient to significantly  alter the laser output.  The  only  ob- 
servable change is a  decrease (12 percent)  in  the  peak  output 
power  and  a slight increase (4 percent)  in  the  time  between 
pulses. This increase is probably  due to a higher lasing thresh- 

old as a result  of the descreased fringe visibility.  The negligible 
effect of spatial  hole  burning is consistent  with  the  findings of 
Sargent et al., [4] in the steady-state analysis of the gain- 
coupled  distributed  feedback laser. 
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